Don’t miss it! Virtual Office Hour featuring the new Safe and Inclusive Work Environments Plan requirement for Off-Campus or Off-Site Research

Tuesday Feb. 7, 2023 3:30- 4:30 ET

Several solicitations from the Directorates for Biosciences (BIO) and Geological Sciences (GEO) will soon require the submission of a Safe and Inclusive Work Environments Plan (list of those solicitations below) that will be considered as part of the Broader Impacts criteria during the review process. An upcoming Virtual Office Hour listening session will occur on February 7, 2023. Program Officers from BIO and GEO will provide an overview of the new requirement and take your questions and comments.

This 2-page supplementary document must address the following four sections:

  1. a brief description of the field setting and unique challenges for the team; 
  2. the steps the proposing organization will take to nurture an inclusive off-campus or off-site working environment, including processes to establish shared team definitions of roles, responsibilities, and culture, e.g., codes of conduct, trainings, mentor/mentee mechanisms and field support that might include regular check-ins, and/or developmental events;  
  3. communication processes within the off-site team and to the organization(s) that minimize singular points within the communication pathway (e.g., there should not be a single person overseeing access to a single satellite phone); and  
  4. the organizational mechanisms that will be used for reporting, responding to, and resolving issues of harassment if they arise.   

If you are planning a submission that will involve off-campus or off-site research, defined as data/information/samples being collected off-campus or off-site including via fieldwork and research activities on vessels and aircraft, we encourage you to join this webinar.

Register for the webinar HERE

The solicitations that currently include this requirement are:

  • BIO Core Solicitations:
    • Division of Environmental Biology (NSF 23-549)
    • Division of Integrative Organismal Systems (NSF 23-547)
    • Division of Molecular and Cellular Biosciences (NSF 23-548 )
  • Biodiversity on a Changing Planet (BoCP, NSF 23-542)
  • Pathways into the Geosciences (GEOPAths NSF 23-540)
  • Cultural Transformation in the Geosciences Community (CTGC NSF 23-539)

Understanding the Rules of Life: Emergent Networks (URoL:EN) Webinar Announced

As noted previously on BIO Buzz, NSF has recently released a revised solicitation under the Understanding the Rules of Life: Emerging Networks (URoL:EN) program. To help inform the community of the changes in and particulars of the new solicitation, the program team will be holding a webinar on Friday, January 7, 2022 from 2:30 p.m. – 3:30 p.m. ET.

Program Officers will provide an introduction of the revised cross-Directorate solicitation and will be available for questions.

As a reminder, the new solicitation is part of the Understanding the Rules of Life: Predicting Phenotype, one of ten “Big Ideas” NSF-wide, and builds on previous URoL programs to help increase knowledge and the ability to predict an organism’s observable characteristics—its phenotype—from its genotype.

Proposals under the solicitation should be submitted by March 1, 2022.

For more information, see the previous BIO Buzz post.

For full details and guidance on award types, amounts and other questions, see Understanding the Rules of Life: Emergent Networks (URoL:EN).

BIO-Wide Virtual Office Hours on New PAPPG

At 3:00 PM Eastern Time on October 26, 2021, join the Directorate for Biological Sciences for a BIO-wide Virtual Office Hour on the changes in the new NSF Proposal and Award Policies and Procedures Guide (PAPPG, 22-1), which will become effective on October 4, 2021.

Representatives from NSF’s Policy Office will present on the changes and be available for questions. 

Register in advance for this webinar:
After registering, you will receive a confirmation email containing information about joining the webinar.

As a reminder, the PAPPG is comprised of documents relating to the Foundation’s proposal and award process for the assistance programs of NSF. The PAPPG, in conjunction with the applicable standard award conditions incorporated by reference in the award, serve as the Foundation’s implementation of 2 CFR §200, Uniform Administrative Requirements, Cost Principles, and Audit Requirements for Federal Awards.

The to-be-effective PAPPG (22-1) can be found at and a list of changes begins on page 2 of the PDF.”

Webinar: LEAPS for Biology

As noted previously on this blog, NSF has recently launched a new opportunity for professional societies to promote diversity, equity, and inclusion — LEAPS (LEAding cultural change through Professional Societies) for Biology. NSF is offering a webinar for the LEAPS program on March 24th at 2 p.m. EST.  We encourage representatives from societies across the biological sciences and those societies focused on broadening participation (SACNAS, AISES, ABRCMS) and/or from the NSF INCLUDES National Network to participate. Individuals from Minority Serving Institutions (MSIs) such as Historically Black Colleges and Universities (HBCUs), Hispanic-Serving Institutions (HSIs), Tribal Colleges and Universities (TCUs), and other organizations/institutions serving diverse populations are also encouraged to attend.

If interested, please register in advance at: After registering, you will receive a confirmation email containing information about joining the webinar.

If you have any questions, please contact one of the following Program Officers:

Fourth Interdisciplinary Workshop in Series on Pandemic Prediction and Prevention Approaching

The Directorates for Biological Sciences (BIO); Computer Information Science and Engineering (CISE); Engineering (ENG); Social, Behavioral and Economic Sciences (SBE); and the Office of International Science and Engineering (OISE) at the National Science Foundation (NSF) have jointly supported a series of interdisciplinary workshops to engage research communities around the topic of Predictive Intelligence for Pandemic Prevention.

The fourth and concluding workshop will be held on March 22-23, 2021 and examine how human attitudes, social behavior, and the drivers underlying both contribute to disease transmission through their determination of policy and behavioral obstacles and supports. We encourage investigators across the biological sciences involved in infectious disease-related research to participate as the workshop will provide an opportunity to network with researchers in akin areas across the sciences and engineering. You can register at

Previous workshops have focused on the ability to rapidly detect and assess the threat of emerging pathogens; an understanding of how the global behavior of an organism is related to interactions between components at the molecular, cellular, and physiological scales; and the identification of pre-emergence and the prediction of rare events.

The goal of the series is to bring together interdisciplinary experts in the biological, engineering, computer, and social and behavioral sciences to start conversations and catalyze ideas on how to advance scientific understanding beyond state-of-the-art in pre-emergence and emergence forecasting, real-time monitoring, and detection of inflection point events in order to prevent and mitigate the occurrence of future pandemics. As per our mission, these NSF supported workshops will focus on the foundational knowledge and capabilities needed to inform future infectious disease outbreak prediction and pandemic prevention.

Each of these workshops is expected to have up to 50 invited active participants. The community can participate in a listen-only mode and interact through chat and Q&A functions.

 More information on the series can be found at

Update on COVID-19 Recovery Efforts

The COVID-19 pandemic continues to impact both researchers and research infrastructure alike. Despite the negative effects, the research community has continued to advance our knowledge, spur innovation, and make discoveries. You also continue to serve as reviewers and panelists, for which we thank you.

Throughout the past year, the National Science Foundation (NSF) has supported the research community by providing guidance, funding flexibilities, and deadline extensions. This support will remain a top priority for NSF as we seek to recover from the pandemic. Up-to-date information on these offerings continues to be added to the agency’s Coronavirus Information page.

As we continue to assess the ongoing impact the pandemic is having on the scientific workforce, NSF and the Directorate for Biological Sciences (BIO) recognizes that it is particularly affecting individuals at critical career points and those at historically under-resourced institutions. While broad support for the community continues to be our priority, including in the opportunity to request supplements to existing awards, BIO wants to highlight the below programs that can support these specific groups. 

Researchers across the biological sciences should review these opportunities and share within their networks. In order to answer any questions you may have about these efforts, or the support available to the wider community, we held a BIO-wide virtual office hour on Tuesday, March 2 from 11AM to 12 PM Eastern. A recording of the session is available (Access Passcode: ++6ZM*=i).

On behalf of BIO and all of NSF, I thank you for your continued work and support during these trying times.


Joanne Tornow
NSF Assistant Director, BIO

Postdoctoral Research Fellows
As we did in FY 2020, BIO intends to increase the total amount of funding available through the Postdoctoral Research Fellowships in Biology (PRFB) Program to support early-career scientists as they embark on research projects investigating life from the genome to the ecosystem level.  

Early-career Investigators
BIO plans an increase to the number of Faculty Early Career Development Program (CAREER) awards across the Directorate, sustaining the enhancement of these awards within BIO in FY 2020.

Mid-career Researchers
Through the Transitions to Excellence in Molecular and Cellular Biosciences Research  (Transitions) program in the Division of Molecular and Cellular Biosciences (MCB) and the NSF-wide Mid-Career Advancement (MCA) program, BIO will support researchers at the Associate Professor stage or equivalent, to substantively enhance and advance their research program through mutually beneficial partnerships. Transitions also supports those at the Full Professor stage, or equivalent.

Undergraduate Biology Education
BIO recently published a Dear Colleague Letter encouraging proposals for the Research Coordination Networks for Undergraduate Biology Education (RCN-UBE) Program, which seeks to improve undergraduate biology in different areas, including through the use of virtual learning, by leveraging the power of a collaborative network.

Recap of BIO-wide Virtual Office Hours on Migration to and Launch of Demo Site

As described in a Dear Colleague Letter (NSF 20-129) and in an earlier post on this blog, proposal submissions for the “no-deadline” programs within the Directorate for Biological Sciences (BIO) are migrating to This effort is the first phase of a migration of all NSF solicitations to

During the week of October 19, BIO Program Officers held a series of virtual office hours to assist the community through this change. The slides from the office hours are linked below.

NSF recently released a proposal preparation demonstration site, which provides proposers the opportunity to create proposals in the role of a Principal Investigator (PI) prior to preparing and submitting proposals in the actual Proposal Submission System. All research community demo site users must sign in to to access the demo site. For further demo site details, please see the advisory and demo site Frequently Asked Questions (FAQs) available via the About Proposal Preparation and Submission page left navigation menu. A set of topic-specific video tutorials is also available.

If you have any questions regarding the migration process, please reach out to your cognizant Program Officer; the Program Officer for the program to which you are applying; or, which is monitored by Program Officers from across BIO. Technical support and FAQs and videos on proposal submission through are also available.

 If you have IT system-related questions, please contact the NSF Help Desk at 1-800-381-1532 (7:00 AM – 9:00 PM ET; Monday – Friday except federal holidays) or via Policy-related questions should be directed to

If you would like to stay up to date on future enhancements to and important information about FastLane, please subscribe to NSF’s System Updates listserv by simply sending a blank email to and you will be automatically enrolled.

Recap: BIO-wide Office Hours

A slide depicting various biological specimens and noting BIO-wide office hours were held March 30 through April 2, 2020BIO Virtual Office Hours Slides

The Directorate for Biological Sciences (BIO) held a series of four virtual office hours during the week of March 30 to provide an opportunity for researchers from across the biological sciences to ask concerns about the impact of the COVID-19 pandemic on NSF efforts, solicitations, and awards, and to hear ideas from the community about how NSF might respond to those impacts in the long-term. Representatives from each of the four Divisions within BIO were present during each session.

During these difficult times, the health and safety of our community remains our utmost concern. NSF is working to provide researchers with the highest level of flexibility to support your health and safety as well as your work.

Slides from the sessions are linked above and here. For information on how NSF is responding to the COVID-19 pandemic and the answers to frequently asked questions about the impact on awards and panels, please visit If you have questions specific to an award or solicitation, please contact the Program Officer; all contact information for BIO Program Officers is available at

Q&A: Talking epigenetics with Rob Martienssen

Robert Martienssen, a plant geneticist studying epigenetic modification at Cold Spring Harbor Laboratory (Image: Kathy Kmonicek)

“Karma” means a lot of things to a lot of different people. For Rob Martienssen, a pioneer in epigenetics and professor at Cold Spring Harbor Laboratory, it refers to a specific transposon – a DNA sequence that can change its position within a genome – that can mean the difference between a plentiful crop and ten years of wasted labor.

Some of the biggest names in plant science have guided Martienssen throughout his career, from his Cambridge University doctoral mentor David Baulcombe – who, with Andrew Hamilton, discovered small interfering RNA – to his postdoctoral mentors, William Taylor and Michael Freeling, at the University of California, Berkeley. As a junior faculty member at Cold Spring Harbor Laboratory, Martienssen even had the chance to work with Barbara McClintock, whose discovery of mobile genetic elements won her the Nobel Prize in 1983.

Today, Martienssen, who has received several NSF awards for his work, is building on that legacy as a professor at Cold Spring Harbor and Howard Hughes Medical Institute. Martienssen recently discussed his lab’s research on epigenomic modification of Karma transposons in the African oil palm in a BIO distinguished lecture titled, “Germline reprogramming and epigenetic inheritance: How to avoid BadKarma.” Afterward, he spoke to us how epigenetics shapes the world around us and just what “bad Karma” means to a plant scientist.

OAD: What is “epigenetics”? How is it different from the genetics we learn about in high school biology?

A: The concept of epigenetics actually has a really long history. Throughout most of the Middle Ages there was this controversy about developmental biology: you could either imagine a germ cell as being very naïve and having to be programmed to make the next generation, or in those days, there was also this idea that maybe there was a homunculus in the sperm that was fully formed and simply had to grow into a baby. Aristotle was very much in the former camp and William Harvey used the term “epigenesis” as a way to talk about this programming that happened to very naïve germ cells to allow them to become a new body – and of course, that’s how we think about development now.

Then in the 1940s, Conrad Waddington wrote a famous article and subsequently a book on something he called “epigenetic landscapes.” He went a bit further with this idea, saying that there was this underlying genetic program, but that depending how it was interpreted in every cell, you would get different fates for those cells. So, this was the idea that you don’t access all the information in the genome in every single cell, you only access some of it – and that was determined by epigenetics. He was using the term because it was sort of superimposed on genetics – it was “above” genetics.

OAD: Did he have a concept of how we interpret epigenetics today?

A: He’s often regarded as the father of epigenetics – he really did have a good idea of what was going on. He had done experiments in Drosophila where he’d selected different wing shapes over multiple generations and was able to select new forms without making mutations – or without making mutations that he could readily identify as a geneticist. So, he really did get it, and was the first person to propose this sort of transgenerational inheritance being based on genes.

At the same time, Barbara McClintock and Alexander Brink were maize geneticists working in the 1940s and 50s, and they actually came up with real examples of traits controlled by genes affecting plant color – like the color of kernels on a corn cob – that were under epigenetic control. They could go in one direction or another from one generation to the next, and Barbara was convinced that all of this was controlled by her “controlling elements” – transposable elements. So those were really the first definitive examples of “transgenerational” epigenetics.

OAD: So, epigenetics led to changes in these traits – wing shape and corn kernel color – without any mutations in the genes that encode them. And even though the change wasn’t genetic, it was able to be shared from one generation to the next. Do we know how this happens?

A: With the discovery of DNA as the genetic material and the composition of chromosomes over the next several decades, mechanisms that might explain this started to come forward and that’s how we really think about epigenetics today. These mechanisms are ways of modifying the chromosomes without changing the DNA sequence. Primary among these – at least in plants and mammals – is DNA methylation, which is very widespread. You can methylate and demethylate DNA chemically using enzymes in the cell, and you can also just replicate DNA without methylation and that will remove methylation passively.

This turned out to be one of the major mechanisms of epigenetic inheritance, but it wasn’t the only one. Chromosomes are not only composed of DNA but also histones, which are the proteins that DNA is wrapped around – you can think of it like a spool of string or wool – and those histones can also be chemically modified in a reversible way. Those modifications are just as important as the ones on DNA, but they have to be associated with specific genes, and so how these modifications only end up on specific genes has been a major part of research in the last few decades.

OAD: What are the prevailing theories for how that happens – how does the cell know where to put those modifications?

One of the things I was involved in about 15 years ago was the realization that some of that instruction about where these modifications were made – both DNA methylation and histone modifications – was through RNA, and in particular small RNA, which David Baulcombe discovered in plants. It’s not the only way – there are lots of DNA-binding proteins that also instruct the cell where to make these epigenetic modifications – but RNA turns out to be very important. More and more we believe that in plants and in some animals like C. elegans, this RNA can actually pass from generation to generation, and could actually have this transgenerational epigenetic effect.

OAD: Much of your work focuses on the African oil palm. Why that plant specifically? What are the “real world” ramifications of the questions you study?

A: The African oil palm is propagated by cloning, and this was done starting in the 1970s. There are some very good reasons for that – it allows you to clone elite germplasm [living seeds or tissues kept as genetic resources for breeding plants or animals] without having to breed it any further, because the clones are all supposedly the same and they’re all going to have the same elite properties. But it turns out that epigenetics raises its ugly head, and in fact these clones are not identical. The reason they’re not is because of transposons that lose DNA methylation in the cloning process – and we’re trying to understand why that happens. When they lose methylation in the cloning process, the next generation has really nasty phenotypes that are really important economically – they develop abnormal flowers and dry, shriveled fruit that yield much less oil.

The reason the oil palm is so important from this point of view is that it only grows in very sensitive parts of the world where it competes with rainforest, and if you transplant an oil plant from the nursery into the plantation, you have to do that before it fruits. It isn’t until 10 years later that you realize there’s a problem – that it has fruit that won’t yield any oil because of this epigenetic change – and you’re sort of stuck, so the temptation is to burn down a bit more of the rainforest and plant a bunch more. Now for big palm oil companies, they can afford to not do that, but for a small holder, it’s a different matter altogether. This is a major problem in Malaysia and Indonesia, and so I’ve been very fortunate to work with the Malaysian government, with the MPOB – the Malaysian Palm Oil Board – and some biotech companies in the U.S. – and I should say in full disclosure that I’m a founder of one – for the last ten years to figure out what was going on.

OAD: What does “bad Karma” mean in this context?
A: We discovered that there was indeed a single transposon that’s responsible for this phenotype. It’s in a gene that is very well known in other plants – and I should say if we hadn’t had all of that basic research in Arabidopsis [a flowering plant used as a model organism in plant biology], we would have no idea what this gene actually does. We were able to develop a very simple test that can predict the phenotype of palm trees that are cloned. The test is based on a transposon called “Karma”, so we call it “good karma” when it’s methylated and you have normal fruit, and “bad Karma” when it’s unmethylated and you have this horrible phenotype. It’s a nice story that goes from really basic principles in epigenetics in model systems to a real-world consequence.

OAD: You work in a field that has – like many others – evolved rapidly over the course of your career, due in no small part to significant technological advances over the last few decades. What is it like to work in your field now versus when you were a graduate student at Cambridge?

A: I’m sure everyone has stories like this, but I got my Ph.D. based on about 1.5 kilobases of DNA sequence, and it’s just amazing when you think about it. The idea of doing a whole genome wasn’t really seriously discussed until the 1990s, and now an individual graduate student or postdoc can easily knock off a genome. It’s amazing. Having the genome sequencing projects¬ has really changed how we do epigenetics and that’s been very exciting. We used to have to grind up a whole plant to get enough DNA to do anything, and now you can literally look at a single pollen grain and really get a good idea of what the epigenetic and genetic makeup of that pollen grain is.

But at the same time, it’s interesting that the same questions are still there and despite all of this fabulous technology, we don’t have a unified concept of what epigenetics really means. And I think that’s very exciting – that’s why we do it.

For the Times They are A-changin’ – Going to no-deadlines in BIO

Invoking Bob Dylan lyrics seems like the best way to transmit the new view of BIO – it is time to awaken, the world is changing. I’ve been immersed in scientific research my entire life, upon taking on the mantel of researcher and educator, moving into academic leadership positions, and finally leading the Directorate for Biological Sciences. Through these experiences, I have witnessed a common thread; scientists want to address questions that are more and more complex. Those complex questions require collaboration and interdisciplinary research, and BIO must be in a position to respond to our communities’ demands.

BIO’s first response is to change how we do business. We are going to move to a no-deadline, full proposal submission mechanism for receiving and reviewing proposals submitted to most core programs in all four divisions in BIO, the Division of Environmental Biology (DEB), the Division of Integrative Organismal Systems (IOS), the Division of Molecular and Cellular Biosciences (MCB), and in the programs in the Research Resources Cluster of the Division of Biological Infrastructure (DBI). Our goal in taking this step is to create an environment where program officers can work collaboratively among the divisions in BIO – uninhibited by varying deadlines across BIO and overwhelming workloads.   Our experience (and others’) suggests this change will alleviate the demands on institutions, reviewers, applicants, and NSF staff caused by steadily increasing numbers of proposals submitted to BIO.

We also hope, and preliminary evidence suggests this is the case, that eliminating deadlines increases the quality of proposals. Under a “no-deadline” review system, a proposal can be submitted on any day, at any time. Investigators are free to submit a proposal when it is as well-developed and competitive as possible, and when it is convenient for them. Submitting proposals at any time allows investigators to have more time to prepare proposals, build collaborations, think more creatively without the pressure of a deadline, and it supports better career-life balance for our investigators. All of these benefits improve the science because they contribute to the best final product for submission.

More information on this change can be found in the DCL, associated FAQs, and upcoming webinars and outreach events. Each Division (DEB, IOS, DBI, and MCB ) has produced a blog about this change, addressed specifically to their communities; I encourage you to check these out. Program officers are standing by for questions about the transition to this change, and I encourage you to call your program officers with specific questions. Additionally, if you have comments or questions about the change to no-deadlines, I would like to hear about them, so please direct them to